

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Spectral K-Ratio Spectrophotometry

Liu Guomin^a; Song Gengxin^a; Zhou Xiaodong^a

^a Department of Applied Chemistry, Fushun Petroleum Institute, Fushun, Liaoning Province, China

To cite this Article Guomin, Liu , Gengxin, Song and Xiaodong, Zhou(1992) 'Spectral K-Ratio Spectrophotometry', Spectroscopy Letters, 25: 4, 565 — 576

To link to this Article: DOI: 10.1080/00387019208021531

URL: <http://dx.doi.org/10.1080/00387019208021531>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SPECTRAL K-RATIO SPECTROPHOTOMETRY

Key Words: Spectral K-ratio; interference; two components; spectrophotometry.

Liu Guomin*, Song Gengxin and Zhou Xiaodong

Department of Applied Chemistry
Fushun Petroleum Institute
Fushun, Liaoning Province, 113001, China

ABSTRACT

A method called "Spectral K-ratio spectrophotometry" was proposed. The method takes the K-coefficient dual-wavelength spectrophotometric method as the mathematical model in order to resolve the different nth-derivative spectral data at one wavelength to determine certain two components systems that their zeroth- (absorption) and nth-derivative spectra were all interfered seriously. Examples of the application of the proposed method were given.

*Author to whom correspondence should be addressed.

INTRODUCTION

The requirements of a satisfactory analytical method are usually manifold, but certainly selectivity must be counted among the most important. Hence there has always been interest in procedures that can improve the selectivity of the measurement methods themselves. Among the most conceptually simple of these methods is derivative spectroscopy. It is becoming increasingly popular as a resolution enhancement technique, allowing the detection and location of the wavelengths of poorly resolved components of complex spectra and reducing the effect of spectral background interferences,^{1~3} but the advantage of derivative measurements depends strongly on the relative widths of the interferent and analyte bands. Derivative spectroscopy has been profitably applied to quantitative analytical applications in which the presence of a broad, unstructured background spectrum overlaps the bands of the analyte.³ F.A. El-Yazbi et al. had used derivative spectrophotometric method to determine three tranquilizer-antidepressant mixtures.⁴ Hesham Salem et al. also used U.V. and U.V. first and second derivative spectrophotometric methods with applying "Zero-Crossing" technique of measurement to determine two-component mixtures.⁵ Basilio Morelli also recommended the "zero-crossing" derivative spectrophotometry for two-component mixtures.^{6,7} But when the absorption spectra and the derivative spectra are all interfered seriously, the determination of the analyte will be very difficult.

Yahya et al. adopted multiwavelength first- and second-derivative spectra with matrix least-squares data processing to resolve mixtures of components with overlapping absorption spectra.⁸ This illustrated that the appropriate mathematical resolving of derivative spectra is one of the effective methods. Solving two or three simultaneous equations had been used to determine two or three component mixtures.^{9,10} Li et al. also proposed a method called "Combined derivative spectrophotometry" for the simultaneous determination of multicomponent.¹¹

This paper proposed a conceptually simple method named "Spectral K-ratio spectrophotometry". It takes the K-coefficient dual wavelengths spectrophotometric method as the mathematical module in order to resolve the different nth-derivative spectral data at one wavelength to determine some two-component systems that their zeroth-derivative (absorption) and nth-derivative spectra were all interfered seriously. The method was proved by using two sets laboratory prepared mixtures.

THEORETICAL

Let us consider a complex system containing two components M and N. Their zero-th derivative and n-th derivative spectra overlap seriously, as Fig. 1 shown.

If at λ_1 , the derivative values (zero-th and n-th) of M and N comply with Beer's law and possess additive property, the following will be true:

$$D^0 = D^0_M + D^0_N \quad (1)$$

$$D^n = D^n_M + D^n_N \quad (2)$$

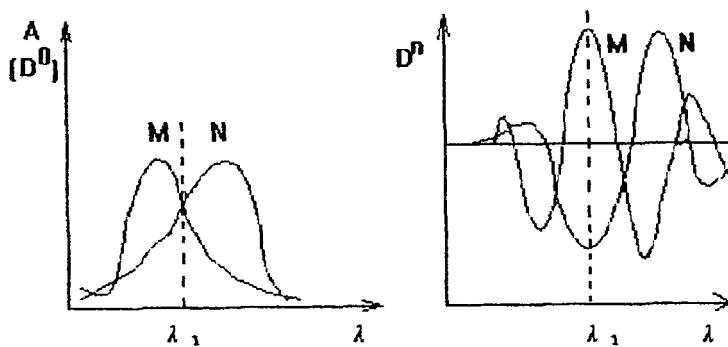


Fig.1. The zeroth- (absorption) and n th-derivative spectra of M and N.

Here, D^0 and D^n are the derivative values of the system at λ_1 ; D^0_M and D^n_M are the zero-th and n -th derivative value of M at λ_1 respectively; D^0_N and D^n_N are those of N at λ_1 respectively.

Let $K_N = \frac{D^n_N}{D^0_N}$, and equation (1) multiplied by K_N ,

equation (3) was obtained:

$$K_N * D^0 = K_N * D^0_M + K_N * D^0_N \quad (3)$$

subtract equation (3) from equation (2), we obtained equation (4):

$$\Delta D = D^n - K_N * D^0 = D^n_M - K_N * D^0_M \quad (4)$$

We all know that K_N is a constant, so, the value of ΔD is only related to the derivative values of M. Hence we could determine M by using ΔD eliminating the interference of N. By selecting a such wavelength that D^n_M possesses the sign digit opposit to that K_N possesses, the absolute value of ΔD would be larger. Hence, not only the two-component mixture can be

determined, but also the sensitivity of the determination can be enhanced. Similarly, the equation to determine N can be deduced:

$$\Delta D = D^n - K_M * D^0 = D^n_N - K_M * D^0_N \quad (5)$$

The determination of K_N or K_M is important. In specific determination, we adopt the method proposed by Ni et al.¹² It is a method to determine simultaneously the coefficient K and the slope of the calibration curve by linear plot means for dual-wavelength absorption determination. The deviation of absorption resulting from molecular interaction can be calibrated by this method and the accuracy is increased. We modified this method to suit with our purpose. The following is the theoretical. According to equation (4), we have (6):

$$D^n - K_N * D^0 = (d_M - K_N * k_M) C_M l \quad (6)$$

here, according to Beer's law, d_M and k_M are constant, C_M is the concentration of M, l is the light path of the sample.

Equation (6) divided by D^0 , we have:

$$\frac{D^n}{D^0} - K_N = (d_M - K_N * k_M) * \frac{C_M * l}{D^0} \quad (7)$$

Let $Y = D^n/D^0$, $k = d_M - K_N * k_M$, $x = (l * C_M) / D^0$,

we obtained:

$$Y = k x + K_N \quad (8)$$

here, K_N is the ratio D^n_N/D^0_N , k is the slope of the calibration curve to determine M. It is obvious that by regression of D^n/D^0 to $C_M * l/D^0$,

we can obtain the two critical parameters for determination of M. Similarly, we have:

$$Y = kx + K_M \quad (9)$$

here, K_M is the ratio D_M^{a}/D_M^0 , k is the slope of the calibration curve to determine N.

EXPERIMENTAL

In this section, we demonstrate the application of the proposed method on two sets of data.

Apparatus

The Perkin-Elmer Model Lambda 9 UV/VIS/NIR Spectrophotometer was used. The spectra were recorded in 1 cm quartz cuvettes. The instrument settings are: scan speed 960nm/min; spectral slit width 2nm; chart speed 60 mm/min; $\Delta \lambda = 3\text{nm}$.

Reagents

All the chemicals used were of analytically pure grade and water was distilled water.

The spectra of thymol, salicylic acid and 4-nitrobenzoic acid were shown in Fig. 2.

Solutions

Aqueous solutions (containing 2% methyl alcohol in volume percent) of thymol, salicylic acid and 4-nitrobenzoic acid were prepared by weighing correspondent reagent as stock solutions.

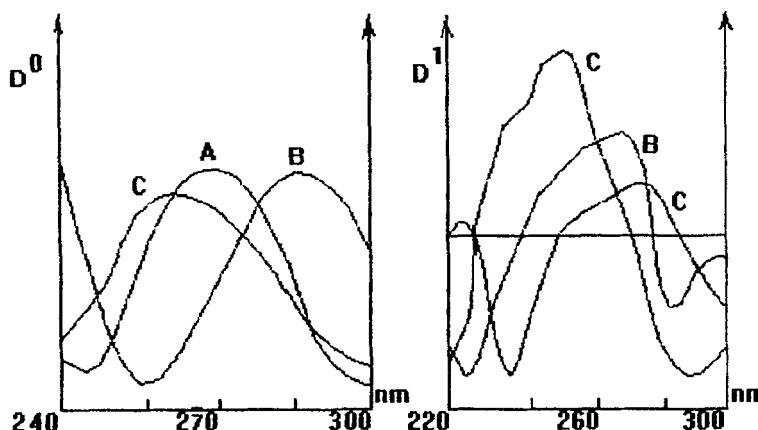


Fig. 2. The absorption and first-derivative spectra of thymol (A), salicylic acid (B) and 4-nitrobenzoic acid (C).

Procedure

Prepare the aqueous solutions (containing 2% methyl alcohol in volume percent) of thymol and salicylic acid at different concentration level and those of thymol and 4-nitrobenzoic acid at different concentration with the correspondent stock solutions.

Then record the spectra against the reagent blank at 282 nm. Calculate the ratio K_N and K_M , the slope of the calibration curve for M and N respectively, by regressing the spectral data.

With the obtained calibration curve, determine a series of samples that their concentrations were already known.

TABLE 1

Results of the determination of thymol (A) and salicylic acid (B).

No.	Concentration prepared *10 ⁻⁴ M/L		Concentration determined *10 ⁻⁴ M/L		Average concentration determined *10 ⁻⁴ M/L		Standard deviation *10 ⁻⁴		Variation coefficient (%)	
	A	B	A	B	A	B	A	B	A	B
1	0.6169	7.473	0.5922;	0.5799;	0.5799	7.446;	7.465;	7.449	0.5840	7.453
2	1.234	6.686	1.201;	1.197;	1.209	6.714;	6.706;	6.722	1.201	6.714
3	2.056	5.900	2.040;	2.044;	2.048	5.967;	5.975;	5.978	2.044	5.975
4	2.879	5.113	2.891;	2.916;	2.895	5.204;	5.219;	5.208	2.899	5.211
5	3.701	4.327	3.734;	3.726;	3.730	4.460;	4.441;	4.448	3.730	4.448
6	4.524	3.540	4.594;	4.459;	4.594	3.638;	3.634;	3.638	4.549	3.638
7	5.346	2.753	5.396;	5.412;	5.412	2.848;	2.840;	2.840	5.408	2.844
8	6.169	1.967	6.214;	6.227;	6.259	2.030;	2.030;	2.002	6.235	2.022
9	6.992	1.180	7.053;	7.033;	7.037	1.188;	1.156;	1.160	7.041	1.168
10	7.814	0.5900	7.851;	7.843;	7.851	0.5270;	0.5152;	0.5270	7.847	0.5231

TABLE 2

Results of the determination of thymol (A) and 4-nitrobenzoic acid (C).

No.	Concentration prepared *10 ⁻⁴ M/L		Concentration determined *10 ⁻⁴ M/L		Average concentration determined *10 ⁻⁴ M/L		Standard deviation *10 ⁻⁶		Variation coefficient (%)	
	A	C	A	C	A	C	A	C	A	C
1	0.6078	1.510	0.6281; 0.7092; 0.6443	1.568; 1.481; 1.501	0.6605	1.497	4.292	4.557	6.498	3.044
2	1.216	1.351	1.208; 1.163; 1.220	1.357; 1.376; 1.357	1.195	1.363	3.005	1.097	2.515	0.8048
3	2.026	1.192	1.986; 1.982; 1.990	1.205; 1.202; 1.208	1.986	1.205	0.4000	0.3000	0.2014	0.2490
4	2.837	1.033	2.816; 2.788; 2.792	1.047; 1.054; 1.047	2.800	1.049	1.514	0.4044	0.5407	0.3855
5	3.647	0.8742	3.530; 3.594	0.9132; 0.8917; 0.8917	3.574	0.8989	3.695	1.241	1.034	1.381
6	4.458	0.7153	4.433; 4.431; 4.441	0.7280; 0.7264; 0.7240	4.431	0.7264	0.5292	2.014	0.1134	2.774
7	5.268	0.5563	5.248; 5.223; 5.248	0.5675; 0.5691; 0.5619	5.240	0.5659	1.443	3.781	0.2754	6.681
8	6.078	0.3974	6.111; 6.074; 6.074	0.3990; 0.3998; 0.3998	6.086	0.3998	2.137	0.4626	0.3511	1.157
9	6.889	0.2384	6.917; 6.913; 6.917	0.2231; 0.2337; 0.2297	6.917	0.2321	0.2345	0.5353	0.03390	2.306
10	7.699	0.1192	7.744; 7.744; 7.728	0.1105; 0.1105; 0.1113	7.740	0.1105	0.9247	0.4618	0.1195	4.179

RESULTS AND DISCUSSIONThe determination of the calibration curve

I. For the mixture of thymol and salicylic acid

(i.) The analyte is thymol

$$Y = -2.528 x + 13.30 \quad \gamma = -0.9999$$

$$K_N = 13.30 \quad \Delta D = -2.528 C_N$$

(ii.) The analyte is salicylic acid

$$Y = 3.305 x - 29.81 \quad \gamma = 0.9994$$

$$K_N = -29.81 \quad \Delta D = 3.305 C_N$$

II. For the mixture of thymol and 4-nitrobenzoic acid

(i.) The analyte is thymol

$$Y = -1.422 x - 4.912 \quad \gamma = 0.9999$$

$$K_N = -4.912 \quad \Delta D = -1.422 C_N$$

(ii.) The analyte is 4-nitrobenzoic acid

$$Y = 1.765 x - 29.89 \quad \gamma = 0.9996$$

$$K_N = -29.89 \quad \Delta D = 1.765 C_N$$

The determination of the samples prepared

Using the method proposed, the samples prepared with the known concentration were determined. The results were listed in Table 1 and Table 2. The results agree well with those of the prepared.

CONCLUSIONS

This paper showed a variant application of the K-coefficient idea. The method is simple and applicable to some two-component mixtures that

the derivative spectra (zeroth- and nth-) of the two components in the mixture were all interfered seriously. The method was not intended as a replacement for other methods but rather as an alternative tool. So far, it was developed for two components, but it can be extended to three or more components with certain restricted conditions.

REFERENCES

1. O'Haver, T. C. and Green G. L. Numerical Error Analysis of Derivative Spectrometry for the Quantitative Analysis of Mixtures. *Anal. Chem.* 1976; 48(2): 312-318.
2. Fell, A. F. and Smith, G. Higher Derivative Methods in Ultraviolet-Visible and Infrared Spectrophotometry. *Anal. Proc.* 1982; 19: 28-33.
3. O'Haver, T. C. Derivative and Wavelength Modulation Spectroscopy. *Anal. Chem.* 1979; 51(1): 91A-100A.
4. El-yazbi F. A.; Korany M. A.; Abdine H. H. and Elsayed M. A. Derivative Spectrophotometric Determination of Some Tranquikizer-Antidepressant Mixtures. *Spectroscopy Letters* 1991; 24(3): 437-449.
5. Salem H.; El-Maamli M.; El-Sadek M. and Kheir A. A. U.V. and U.V. Derivative Spectrophotometric Determination of Two-Component Mixtures. *Spectroscopy Letters* 1991; 24(3): 451-470.
6. Morelli, B. "Zero-crossing" Derivative Spectrophotometric Determination of Mixtures of Cephapirin Sodium and Cefuroxine Sodium in Pure Form and in Injections. *Analyst*, 1988; 113: 1077-1082.
7. Morelli, B. Application of the "Zero-crossing" Derivative Spectrophotometry to the Analysis of Mixtures of Cefoperazone and Cefamandole Nafate in Pure and Pharmaceutical Dosage Forms. *Anal. Lett.* 1988; 21(5):759-772.
8. Tahboub, Y. R.; Pardue, H. L. Evaluation of Multiwavelength First- and Second-Derivative Spectra for the Quantitation of Mixtures of Polynuclear Aromatic Hydrocarbons. *Anal. Chem.* 1985; 57: 38-41.

9. M.A. Korany; A.M. Wahbi; M.A. El-Sayed and S. Mandour. First Derivative Spectrophotometric Determination of Certain Drugs in Two-Component Mixtures. *Anal. Lett.* 1984; 17(B12): 1373-1389.
10. M.A. Korany; A.M. Wahbi; S. Mandour and M.A. El-Sayed. Determination of Certain Drugs in Multicomponent Formulations by First Derivative Ultraviolet Spectrophotometry. *Ibid.* 1985; 18(B1): 21-34.
11. Li Jinhe; Xi Changsheng and Shi Huiming. Combined Derivative Spectrophotometry. *Fenxi Huaxue* 1989; 17(3): 217-221.
12. Ni Yongnian; Zhu Huifang and Bai Ling. Study on Dual-Wavelength Spectrophotometry—Simultaneous Determination of Coefficient K and Slope of Calibration Curve by Linear Plot Method. *Fenxi Huaxue* 1988; 16(3): 266-268.

Date Received: 12/12/91
Date Accepted: 01/20/92